课程介绍
CalculusTwo:SequencesandSeriesisanintroductiontosequences,infiniteseries,convergencetests,andTaylorseries.Thecourseemphasizesnotjustgettinganswers,butaskingthequestion"whyisthistrue?"
课程目录
1Sequences
1.1HowCanISucceedinThisCourse
1.2.1WhatisaSequence
1.2.2HowisaSequencePresented
1.2.3CantheSameSequencebePresentedinDifferentWays
1.3.1HowCanWeBuildNewSequencesfromOldSequences
1.3.2WhatisanArithmeticProgression
1.4.1WhatisanGeometricProgression
1.4.2WhatistheLimitofaSequence
1.4.3Visually,WhatistheLimitofaSequence
1.5.1IsitEasytoFindtheLimitofaSequence
1.5.2ForSomeEpsilon,HowLargeNeedNBe
1.6.1HowDoSequencesHelpwiththeSquareRootofTwo
1.6.2WhenisaSequenceBounded
1.6.3WhenisaSequenceIncreasing
1.6.4WhatistheMonotoneConvergenceTheorem
1.6.5HowCantheMonotoneConvergenceTheoremHelp
1.7.1IsThereaSequenceThatIncludesEveryInteger
1.7.2IsThereaSequenceThatIncludesEveryRealNumber
2Overview
2.1WhatHappensinThisModule
2.2WhatDoes∑a?=LMean_
2.3WhatisaGeometricSeries_
2.4WhatistheValueof∑???∞r?_
2.5WhyDoes∑???∞1_2?=2_
2.6WhatistheSumofaTelescopingSeries_
2.7DoestheSeries∑n_(n+1)ConvergeorDiverge_
2.8DoestheSeries1+1_2+1_3+?ConvergeorDiverge_
2.9Does∑sin?k_2?ConvergeorDiverge_
2.10WhatistheComparisonTest_
2.11HowCanGroupingMaketheComparisonTestEvenBetter_
2.12Whatis∑1_n?_
2.13InWhatSenseDoes0.99999?Equal1_
2.14InWhatSenseis∑9?10?Meaningful_
3Overview
3.1WhatWillHappeninThisModule_
3.2DoesSumn^5_4^nConverge_
3.3WhatDoestheRatioTestSay_
3.4DoestheRatioTestAlwaysWork_
3.5DoesSumn!_n^nConverge_
3.6HowDoesn!Compareton^n_
3.7WhyDon'tILovetheRootTest_
3.8HowCanIntegratingHelpUstoAddressConvergence_
3.9HowElseCanIShowtheHarmonicSeriesDiverges_
3.10DoesSum1_n^pConverge_
3.11DoesSum1_(nlogn)Converge_
3.12HowFarOutCanYouBuildaOneSidedBridge_
4Overview
4.1WhatisthisModuleAllAbout_
4.2WhyHaveWeBeenAssumingtheTermsarePositive_
4.3WhyDoAbsolutelyConvergentSeriesJustPlainConverge_
4.4WhyisAbsoluteConvergenceanImportantConcept_
4.5WhatisConditionalConvergence_
4.6WhatisanAlternatingSeries_
4.7WhatistheAlternatingSeriesTest_
4.8WhyCanPeopleGetAwayWithWritingsum_na_n_
4.9WhyisThisAllsoVague...orCoarse_
4.10WhatHappensifIrearrangetheTermsinaConditionallyConvergentSeries_
5Overview
5.1WhatarePowerSeries_
5.2ForWhichValuesDoesaPowerSeriesConverge_
5.3WhyDoesaPowerSeriesConvergeAbsolutely_
5.4HowComplicatedMighttheIntervalofConvergenceBe_
5.5HowDoIFindtheRadiusofConvergence_
5.6WhatiftheRadiusofConvergenceisInfinite_
5.7WhatiftheRadiusofConvergenceisZero_
5.8WhatisaPowerSeriesCenteredArounda_
5.9CanIDifferentiateaPowerSeries_
5.10CanIIntegrateaPowerSeries_
5.11WhyMightIbelieveIHaveaPowerSeriesfore^x_
5.12WhatHappensifIMultiplyTwoPowerSeries_
5.13WhatHappensifITransform1_(1-x)_
5.14WhatisaFormulafortheFibonacciNumbers_
6Overview
6.1WhatisThisLastModuleAbout_
6.2WhatisBetterThanaLinearApproximation_
6.3WhatistheTaylorSeriesforfAroundZero_
6.4WhatistheTaylorSeriesforfCenteredArounda_
6.5WhatistheTaylorSeriesforSinAroundZero_
6.6WhatisTaylor'sTheorem_
6.7WhyistheRadiusofConvergenceof1_(1+x^2)soSmall_
6.8HowisTaylor'sTheoremLikeaSoupedUpVersionoftheMeanValueTheorem_
6.9Approximately,WhatiscosxWhenxisNearZero_
6.10HowDoTaylorSeriesProvideIntuitionForLimits_
6.11WhatisaRealAnalyticFunction_
6.12HowAreRealAnalyticFunctionsSometimeslikeHolograms_