北京爱预科教育学校—官网

咨询热线:
400-888-4846

北京爱预科教育学校课程中心>积分2
  课程介绍
 
  CalculusTwo:SequencesandSeriesisanintroductiontosequences,infiniteseries,convergencetests,andTaylorseries.Thecourseemphasizesnotjustgettinganswers,butaskingthequestion"whyisthistrue?"
 
  课程目录
 
  1Sequences
 
  1.1HowCanISucceedinThisCourse
 
  1.2.1WhatisaSequence
 
  1.2.2HowisaSequencePresented
 
  1.2.3CantheSameSequencebePresentedinDifferentWays
 
  1.3.1HowCanWeBuildNewSequencesfromOldSequences
 
  1.3.2WhatisanArithmeticProgression
 
  1.4.1WhatisanGeometricProgression
 
  1.4.2WhatistheLimitofaSequence
 
  1.4.3Visually,WhatistheLimitofaSequence
 
  1.5.1IsitEasytoFindtheLimitofaSequence
 
  1.5.2ForSomeEpsilon,HowLargeNeedNBe
 
  1.6.1HowDoSequencesHelpwiththeSquareRootofTwo
 
  1.6.2WhenisaSequenceBounded
 
  1.6.3WhenisaSequenceIncreasing
 
  1.6.4WhatistheMonotoneConvergenceTheorem
 
  1.6.5HowCantheMonotoneConvergenceTheoremHelp
 
  1.7.1IsThereaSequenceThatIncludesEveryInteger
 
  1.7.2IsThereaSequenceThatIncludesEveryRealNumber
 
  2Overview
 
  2.1WhatHappensinThisModule
 
  2.2WhatDoes∑a?=LMean_
 
  2.3WhatisaGeometricSeries_
 
  2.4WhatistheValueof∑???∞r?_
 
  2.5WhyDoes∑???∞1_2?=2_
 
  2.6WhatistheSumofaTelescopingSeries_
 
  2.7DoestheSeries∑n_(n+1)ConvergeorDiverge_
 
  2.8DoestheSeries1+1_2+1_3+?ConvergeorDiverge_
 
  2.9Does∑sin?k_2?ConvergeorDiverge_
 
  2.10WhatistheComparisonTest_
 
  2.11HowCanGroupingMaketheComparisonTestEvenBetter_
 
  2.12Whatis∑1_n?_
 
  2.13InWhatSenseDoes0.99999?Equal1_
 
  2.14InWhatSenseis∑9?10?Meaningful_
 
  3Overview
 
  3.1WhatWillHappeninThisModule_
 
  3.2DoesSumn^5_4^nConverge_
 
  3.3WhatDoestheRatioTestSay_
 
  3.4DoestheRatioTestAlwaysWork_
 
  3.5DoesSumn!_n^nConverge_
 
  3.6HowDoesn!Compareton^n_
 
  3.7WhyDon'tILovetheRootTest_
 
  3.8HowCanIntegratingHelpUstoAddressConvergence_
 
  3.9HowElseCanIShowtheHarmonicSeriesDiverges_
 
  3.10DoesSum1_n^pConverge_
 
  3.11DoesSum1_(nlogn)Converge_
 
  3.12HowFarOutCanYouBuildaOneSidedBridge_
 
  4Overview
 
  4.1WhatisthisModuleAllAbout_
 
  4.2WhyHaveWeBeenAssumingtheTermsarePositive_
 
  4.3WhyDoAbsolutelyConvergentSeriesJustPlainConverge_
 
  4.4WhyisAbsoluteConvergenceanImportantConcept_
 
  4.5WhatisConditionalConvergence_
 
  4.6WhatisanAlternatingSeries_
 
  4.7WhatistheAlternatingSeriesTest_
 
  4.8WhyCanPeopleGetAwayWithWritingsum_na_n_
 
  4.9WhyisThisAllsoVague...orCoarse_
 
  4.10WhatHappensifIrearrangetheTermsinaConditionallyConvergentSeries_
 
  5Overview
 
  5.1WhatarePowerSeries_
 
  5.2ForWhichValuesDoesaPowerSeriesConverge_
 
  5.3WhyDoesaPowerSeriesConvergeAbsolutely_
 
  5.4HowComplicatedMighttheIntervalofConvergenceBe_
 
  5.5HowDoIFindtheRadiusofConvergence_
 
  5.6WhatiftheRadiusofConvergenceisInfinite_
 
  5.7WhatiftheRadiusofConvergenceisZero_
 
  5.8WhatisaPowerSeriesCenteredArounda_
 
  5.9CanIDifferentiateaPowerSeries_
 
  5.10CanIIntegrateaPowerSeries_
 
  5.11WhyMightIbelieveIHaveaPowerSeriesfore^x_
 
  5.12WhatHappensifIMultiplyTwoPowerSeries_
 
  5.13WhatHappensifITransform1_(1-x)_
 
  5.14WhatisaFormulafortheFibonacciNumbers_
 
  6Overview
 
  6.1WhatisThisLastModuleAbout_
 
  6.2WhatisBetterThanaLinearApproximation_
 
  6.3WhatistheTaylorSeriesforfAroundZero_
 
  6.4WhatistheTaylorSeriesforfCenteredArounda_
 
  6.5WhatistheTaylorSeriesforSinAroundZero_
 
  6.6WhatisTaylor'sTheorem_
 
  6.7WhyistheRadiusofConvergenceof1_(1+x^2)soSmall_
 
  6.8HowisTaylor'sTheoremLikeaSoupedUpVersionoftheMeanValueTheorem_
 
  6.9Approximately,WhatiscosxWhenxisNearZero_
 
  6.10HowDoTaylorSeriesProvideIntuitionForLimits_
 
  6.11WhatisaRealAnalyticFunction_
 
  6.12HowAreRealAnalyticFunctionsSometimeslikeHolograms_
 
  
培训世界 北京爱预科教育学校体验课 免费预约